2022届2022年普通高等学校招生全国统一考试22·(新高考)JJ·YTCT金卷押题猜题(一)1数学答案

趣对答案

2022届2022年普通高等学校招生全国统一考试22·(新高考)JJ·YTCT金卷押题猜题(一)1数学答案,目前我们已经整理了2022届2022年普通高等学校招生全国统一考试22·(新高考)JJ·YTCT金卷押题猜题(一)1数学答案的各科答案和试卷,更多试卷答案请关注本答案网。

2022届2022年普通高等学校招生全国统一考试22·(新高考)JJ·YTCT金卷押题猜题(一)1数学答案

image.png@!testimage.png@!test

18.解:(D)f(r)=a.b=msin xcos x+ncos'x=sin 2x+=(1+cos 2x)3分把丌3+√3和12482/代入上式2++√3+得:→m5分2+4√2sin 2x+7分24)2f(x)的最小正周期为x-8分(Ⅱ)由已知得g(x)=fx+222--9分sin 2x+-+cos 2x+10分1当2-√1+√x∈2时,g(x)的值域为12分2g(x)的单调递减区间为015分

image.png@!testimage.png@!test

21.证明:g(x)=f(x,则f(x)=g(x)=+sinx+ xcosx,g(x)=-+2cosx- rsin x……2xe, r).--3<0, 2 cosx <0, sinx>0,g()=1+2c0sx- sinx<0…3故g()在区间(,x)上单调递遘减.4又∵az、2=-+1>0,g(x)=--丌<0……5所以g(x)在区间(,m)上存在唯一零点…6(2)要证f(x)<2xlnx+x(l+sinx),即证(2x-1)lnx+x>0,令h(x)=(2x-1)lnx+x,则h(x)=2lnx--+3……,7令m(x)=h(x),所以m(x)在(0,+∞)单调递增.…8∵m(1)=2>0,m()=1-2ln2<0,所以存在唯的x∈(,1),使得m(x0)=2lnx--+3=0……9当0 x时h(x)>0,h(x)在(xn,+∞)上单调递增……10°故h(x)m=h(x)=(2x0-1)In xo t xo=-(2x0+~)……112因为x∈(1所以2x+1∈(2,,所以h(n)>0即2x-)mx+x>0恒成立,综上所述对任意x∈(0,+∞),都有f(x)<2xlnx+x(l+sinx)…12